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Abstract—This paper proposes SALUS, a data-driven real-time
safety monitor, that detects and mitigates safety violations of an
autonomous vehicle (AV). The key insight is that traffic situations
that lead to AV safety violations fall into patterns and can be
identified by learning from the safety violations of the AV. Our
approach is to use machine learning (ML) techniques to model
the traffic behaviors that result in safety violations in the AV,
characterize their early symptoms for training a preemptive
model, hence deploy and detect real-time safety violations before
the actual crashes happen to the AV. In order to train our ML
model, we leverage a pipeline of fuzzing techniques to tailor AV-
specific safety violation symptoms and generate the training data
via data argumentation techniques. Our evaluation demonstrates
our proposed technique is effective in reducing over 97.2% of
safety violations in industry-level autonomous driving systems,
such as Baidu Apollo, with no more than 0.018 false positive
values.

Index Terms—Autonomous Vehicles, Safety-Critical Applica-
tions, Machine Learning, Software Fuzzing

I. INTRODUCTION

Autonomous vehicle (AV) technologies, which hold great
potential to bring convenience and increase productivity, have
entered the public’s vision in recent years. Due to the rapid
development, there have been many AVs on the market, such
as Tesla Model series [1], Waymo Drivers [2], and Baidu
Apollo [3]. However, AV industry is still facing many critical
challenges – existing AV products are far from being safe on
public roads. For example, in a recent accident report from
NHTSA, Tesla Autopilot has caused 15 fatal crashes since
it was on market in 2015 [4]. Another well-known example
is The death of Elaine Herzberg [5], which involves a fully
self-driving Uber AV in the accident. As a result, the safety of
AVs is a major concern to the public, and it largely determines
AV’s success in the future marketplace.

Traditional methods to improve AV safety are through
extensive stress testing (e.g., via road test and simulation-based
tests) [6], [2], [7]. After finding the test cases which lead to
safety violations, AV developers need to find the code that are
responsible for the revealed problems before fixing them in the
code. This an iterative process until few safety violations can
be found in the AV. While the process has been practiced in
the AV industry, it is often impossible to completely eliminate
safety violations [8], not to mention it in an agile software
development cycle among the rapid evolving AV industry. As
a result, the safety of AVs often suffers.
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Fig. 1: Detecting and mitigating safety violations with SALUS
technique.

In this paper, we propose a safety framework, SALUS, which
generates a safety monitor for a given AV. The monitor can
detect and mitigate safety violations in an AV in real-time
without needing developers to modify AV software. SALUS
first generates data which characterizes the safety violations
of the AV, then uses ML techniques to craft a model which
takes real-time trajectories of surrounding traffic participants
to detect the early signs of potential safety violations. In
such case, the monitor will alerts the AV, and a mitigation
components in SALUS will be triggered and take actions
over the AV towards a safe state. Our key insight that lays
behind SALUS is that traffic situations which lead to AV safety
violations fall into patterns and these patterns can be identified
by learning from the safety violations of the AV.

Figure 1 explains the general idea of how the safety monitor
generated by SALUS prevents an AV from safety violations in
a cut-in scenario (a popular AV safety violation that results
in AV at-fault accidents, Section III). The safety monitor
evaluates the risks in real-time by analyzing the trajectories
of the surrounding vehicles in the first several time slots, and
match its pattern with the ML model, in order to determine
if any actions of all the participate will likely lead to a safety
violation of the AV. If likely dangerous trajectories are found
in the surrounding moving vehicles, the monitor preemptively
alerts for actions and hence an accident can be avoided. In
the example, without SALUS, we find the AV may not be
able to tell the danger early enough when the cut-in falls
into certain trajectory patterns. Hence, existing AVs usually
slow down too late to avoid the crash, hitting the leading
vehicle from the back and leading to an at-fault accident.



With SALUS, the safety monitor can detect the early signs
of the dangerous trajectory and mitigate (e.g., AV brakes) in
a preemptive fashion, in order to avoid the accident.

Our contributions and main results are as follows:
• We conduct an initial study that characterizes safety

violations in different AVs. We also stress-test AVs us-
ing accident test cases by human drivers based on the
NHTSA repository. The initial study shows that different
AVs have very different sensitivities to different types
of safety violations and human driver accident cases.
Therefore, one need to find out safety violations that are
specific to the AV under test in order to generate the
training data for the ML model that monitors AV safety.

• We design a framework, SALUS, that generates a safety
monitor for a given AV. The framework incorporates
fuzzing and data argumentation to generate and collect
the training data for the safety monitor. Then we craft
a sequence-to-sequence model to build our monitor. The
entire process is fully automated. The evaluations on three
AVs show that our proposed safety monitor is able to
detect all the AV safety violations that appear in the stress
tests with an only 0.011 false positive on average.

• Upon the alerts sent by the safety monitor, we implement
a mitigation strategy which send brake commands to the
AV as per situation evolves in order to avoid the potential
crash. The evaluation shows that our mitigation strategy,
together with the safety monitor, brings AV back to safe
state with 99.33% success rate.

The rest of this paper is organized as follows: In Section
II, we introduce the background knowledge of this work. In
Section III, we discuss about the initial study set up and
finding. Section IV we present the detailed design of SALUS.
In Section V, we evaluate this work from two perspectives:
the prediction accuracy and accident mitigation efficiency. We
conclude this work in the last section.

II. BACKGROUND

In this section, we briefly introduce the background knowl-
edge of AV safety, including autonomous driving system,
high-fidelity simulator, fuzzing technique, and sequential data
processing algorithms.

A. Autonomous Driving Systems

Autonomous driving system (ADS) is a decentralized and
highly collaborative combination of all AV-related software
and hardware. AVs utilize autonomous driving system (ADS)
technology to coordinate with mechanical components and
replace human driving [2], [9], [10]. A modern ADS infras-
tructure consist of a sensor layer and six modules [3], which
can be shown in Figure 2 and explained as below.

Sensor Layer contains several sensor units such as IMU,
GPS, camera, Radar, and Lidar. These sensors can provide raw
data such as pictures, point clouds, GPS locations, etc. All the
generated data will be sent to and processed by later modules.

Localization Module obtains the current position informa-
tion of the vehicle by processing the coordinate system in
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Fig. 2: A high-level overview of ADS.

the high-definition map, GPS information, and the point cloud
provided by the Lidar, etc.

Perception Module processes the raw data through hard-
ware such as cameras and Lidars carried by the vehicle itself,
including data pre-processing (deep learning model) and post-
processing. This module can obtain obstacle, lane line, and
traffic light information around the vehicle.

Prediction Module obtains the information of obstacles
around the vehicle through the perception module and the
positioning module and predicts the running trajectory of
these obstacles. Those trajectories will be sent to the planning
module for calculation for avoiding potential obstacles.

Routing Module calculates the long-term travel route of
the vehicle based on current vehicle position, a high-fidelity
map, and the destination provided by user.

Planning Module navigates the short-term route, such as
avoiding obstacles and following traffic lights, by obtaining
the location information and other surrounding environment
information provided by other modules.

Control Module is based on the instructions from Planning
and Routing modules. It also connects the vehicle hardware,
steering wheel, accelerator brake, and other city and county
controls of the vehicle through CANbus.

B. LGSVL Simulator

LGSVL (LG-Silicon Valley Lab) [11] is a real-time sim-
ulator based on Unity engines and completely simulates our
experiments. It can simulate the cars, environments, and traffic
participants in real-time. By linking this simulator and ADS
through a bridge, LGSVL can return the information of AV
driving status, such as speed, position, and steering angle. The
AV’s action in LGSVL simulator can also be controlled by
Python API. In this work, we first build the bridge between
LGSVL and Apollo, then run the Python APIs provided by
LGSVL to navigate AV. The emergency braking function used
in SALUS is also implemented on this API.

C. AV Safety Violations

AV safety violation is the case when AV violates the safety
constraints and causes an accident. Safety constraints can be
defined from the real-world specific traffic laws and insurance
companies’ liability judgment. NPC stands for non-player
character, in our study, we use NPC to refer to surrounding
vehicles. According to the real-world traffic laws, we have two
safety constraints in this work. 1) Any car on the road must



Fig. 3: Illustration of LGSVL simulator (left) and Baidu
Apollo ADS (right).

keep a safe distance from the front car but fails to do so, likely
causing a rear-end collision accident when the front car applies
a brake. 2) Any car willing to make a turn on the crossroad
or freeway must yield to the straight-going car and rear car
but fails to do so, causing a head-on collision and the side
collision. Note that we only consider the accident when the
AV bears the liability since we could not mitigate the NPC’s
behavior to avoid the accident when the NPC made a safety
violation.

D. Fuzzing for AV Safety Violations

Originated from an operating system academia project [12],
software fuzzing has been well studied and widely recognized
in test case generation and software vulnerability detection in
the past years [13], [14], [15], [16]. By utilizing searching
algorithms such as genetic algorithm during software testing
phase, researchers can localize vulnerable cases and hence
boost the application.

AV-FUZZER [17] is the first work to adopt software fuzzing
technique in AV safety and also comprehensively analyzes
the efficiency of finding AV-at-fault accidents. AV-FUZZER is
based on meta-heuristic algorithms and implements a genetic
algorithm to find NPC (nearby vehicles) control instructions
that may lead to AV-at-fault accidents. The reasons we utilize
AV-FUZZER to generate training data are threefold: (1) Param-
eters such as initial seed, number of NPCs, and initial locations
of AV can be highly-customized in AV-FUZZER. (2) AV-
FUZZER is implemented on LGSVL and Baidu Apollo, which
are compatible with our testing environments. (3) Compared
with random fuzzing technique, AV-FUZZER has a unique
fitness function and mutation strategy that can significantly
speed up finding the safety violation cases. As a result, we
use AV-FUZZER as a black box to generate efficient training
data for SALUS with a relatively low cost.

E. Sequence to Sequence Model

Sequence to sequence (Seq2Seq) model [18] is a special
class of recurrent neural network (RNN) architectures that are
typically utilized to solve complex language problems such
as question answering and machine translation. Seq2Seq is
composed of an RNN-based encoder and decoder. The encoder
maps the sequential information into an encode state, while
the decoder transfers this encode state into another vector
that contains more refined sequential information. Besides the
plain RNN model, other RNN variants such as LSTM [19]
and GRU [20] can also be adopted as encoder and decoder

components. Since our designed AV safety monitor predicts
current surroundings by history information, usually time-
series data. We utilize an LSTM-based Seq2Seq model as the
main structure of SALUS.

III. INITAL STUDY

In this section, we conduct a comprehensive initial study to
investigate the ADSs’ sensitivity against different AV safety
violations. Knowing the sensitivity is important for us to
formulate an efficient strategy when generating training data
for our proposed safety monitor.

A. Our Hypothesis

Our hypothesis is that the sensitivity of safety violations are
highly ADS-specific. Thus different ADSs, such as different
versions, exhibit very different sensitivity to different safety
violations. If the hypothesis is true, we need to find AV-specific
safety violations given an AV under test. Otherwise, we can
use a generic set of training data to train our safety monitor.

B. Experimental Setup

In order to test our hypothesis, we find three versions
of ADS, and stress test the ADSs with a set of publicly
available test cases provided by Traffic Safety Administration
(NHTSA) [4].

1) NHTSA Safety Violation Repository: There are total 37
pre-crash scenarios from a report summarized by NHTSA
in April 2007. This report presents comprehensive situations
when safety violations are about to occur based on human
behaviors. Specifically, the occurrence frequency of these
situations includes various nearby environmental factors, such
as vehicle position, the status of traffic lights, etc, making
our simulations closer to reality. These test cases are also
frequently used in other related studies in this area [21], [22].

We select 9 of 37 scenarios as the target violations in our
initial study based on the following criteria: (1) We exclude
violations caused by the vehicle’s problems, such as vehicle
puncture or engine failure, since our safety monitors cannot
detect the complete functioning of vehicle’s components. (2)
We do not choose the violations that happen due to environ-
mental issues, such as weather conditions, road smoothness,
and whether the road is slippery. (3) We do not select the
violations that are collided with non-vehicle objects such as
pedestrians, bicycles, street lights, etc. (4) We do not consider
the impact of other road signals such as traffic lights and stop
signs, etc.

Based on those criteria, we find 9 safety violation types (see
Figure 4) from these 37 pre-crash scenarios, which are briefly
explained as follow:

• Type 1 Cut-in: Two cars are in two lanes in the same
direction. AV is in the right lane, while NPC is in the
left lane. NPC changes to the right lane in a very short
time and decelerates, leaving no time for NPC to make
any response. So AV hits the side and rear of NPC.

• Type 2 Lead Slowdown: Two cars are in the same lane.
AV is in the back, and NPC is in the front. NPC and AV
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Fig. 5: AV safety violation rates among 9 accident types under three different ADS versions.

are driving at a certain speed, but NPC suddenly brakes
to a low speed, leaving no time for AV to react. So AV
hits the rear-end of NPC, causing a car accident.

• Type 3 Lead Stop: Two cars are in the same lane. AV
is in the back, while NPC is in the front. Both NPC
and AV are driving at a certain speed, but NPC suddenly
brakes to a stop in a very short time, leaving no time for
AV to response. So AV collides with NPC, causing a car
accident.

• Type 4 Lead Accelerate: Two cars are in the same lane.
AV is in the back, and NPC is in the front. NPC and AV
are both driving at a certain speed, but the NPC suddenly
accelerates. AV may accelerate to follow the NPC too
much, directly colliding with the NPC vehicle, causing a
car accident.

• Type 5 Head-on Crash (changing lane): Two cars are
in two lanes in opposite directions. AV tries to switch to
another opposite lane and thus head-on crash with NPC.

• Type 6 Head-on Crash (not changing lane): Two cars
are in two lanes in opposite directions. AV is too close to
NPC in the opposite direction, causing a head-on crash.

• Type 7 Lead Low Constant Speed: Two cars are in the
same lane. AV is in the back, and NPC is in the front.
Both NPC and AV are driving at a certain speed, but NPC
is driving at a low and constant speed. The driver of AV
may not pay attention to the front car, causing a collision
to the rear-end of NPC, incurring a car accident.

• Type 8 Same Direction (changing lane): Two cars are
in the same lane. AV is in the back, while NPC is in
the front. AV tries to overtake the front NPC but fails to
operate the car properly, causing a collision with NPC.

• Type 9 Failed Yield Straight: Two cars are in the
opposite direction in a non-signalized junction. AV is

turning left, while NPC is going straight. AV fails to yield
NPC, causing a collision in the side of the NPC.

2) ADS Selection: For the ADS selection, we used ADSs
that are from three versions of Baidu Apollo [3], which are
3.5, 5.0, and 6.0, in this section. Baidu Apollo, which is one
of the most advanced ADSs in the industry [21], [3], has gone
through 7 iterations since its first official release in 2017 yet
has implemented a relatively complete functionality. As Baidu
Apollo has been commonly-used in this literature, we use its
popular branch Apollo 3.5 , Apollo 5.0 and Apollo 6.0 in this
work. Each version has different code base.

3) Hardware: Our experiments were conducted on a Linux
machine with 32GB RAM. This machine is also equipped with
an AMD 5900X CPU (12-core/24-thread) and an NVIDIA
GTX 1080 Ti GPU card.

4) Driving Environment Setups: We mock up the NPC
trajectory for each accident type in stress test simulations. The
time of each simulation trial is 10 seconds. We test 9 accident
types in 3 ADS versions, and each accident type has 300 trials
on each ADS version. We then compared the safety violation
rate in each ADS version. We define the safety violation rate
as the number of AV at-fault accidents over the total number
of trials in the safety violation type.

C. Results and Observations

We analyze the results from two perspectives: 1) Impact
of safety violations on different ADS versions, and 2) Safety
violations between human drivers and AVs.

1) Impact on ADS Versions: Figure 5 shows the safety
violation rates in different ADS versions caused by different
safety violation types. We can observe that the three ADS
versions exhibit fairly different sensitivity across each safety
violation type. For example, Apollo 6.0 has a 94% safety



violation rate in Type 3 (Lead Stop), whereas they are 78.67%
and 33.00% in Apollo 3.5 and Apollo 5.0 respectively. In
Type 1 (Cut-in), Apollo 3.5, 5.0 and 6.0 all show high
safety violation rates with 88.67%, 94.67%, and 68.00%. To
summarize our first observation:

(O-1): Different ADSs shows different vulnerabilities under
different safety violation types. Safety monitor should detect
specific AV safety violation symptoms for different AVs.

2) Human Drivers and AVs: From the results, we can see
that in Type 5 (Head-on Crash), Type 7 (Lead Accelerate), and
Type 8 (Lead Low Constant Speed), none of the three ADSes
has any safety violations. In another word, those accidents
which are proven that human beings are likely to cause, can be
avoided by AV itself. Thus, we have our second observation:

(O-2): Human accident insights on avoiding traffic accidents
are not entirely suitable for building AV safety monitor. A
safety monitor technique for AVs should explore the safety
characteristics of AV itself.

In this paper, we propose our technique, SALUS, which is a
data-driven ML-based real-time monitor that complies the two
observations. Based on (O-1), we learn that the safety monitor
for a AV need to be based on the set of safety violations that
the AV reveal, instead of using a generic set of common safety
violations. That leads to a collection of AV-specific data of
safety violation given an ADS, in order to train the ML model
for safety monitor. On the other hand, for (O-2), we know that
using existing human driver accidents cannot fully explore the
vulnerability of ADS. Further design details in SALUS will be
discussed in the next section.

IV. FRAMEWORK DESIGN

We design a framework, SALUS, which can generates a
safety monitor for a given ADS, and mitigates AV safety
violations in the ADS before they happen. In general, SALUS
framework consists of two parts: Creation and Deployment.
The first part presents how an ML-based safety monitor is
created, while the second part introduces how to integrate this
safety monitor into a running AV, and mitigates AV safety
violations. Note that data collection and model training steps
can be executed offline, hence they are one-time cost for an
ADS.

A. SALUS Creation

Figure 6 shows the high-level workflow of the creation
process in SALUS. Users only need to provide a specific ADS
and SALUS can create a customized ML-based safety monitor
for the AV. The creation process can be further divided into
two parts: dataset generation and model training. As shown in
the figure, dataset generation consists of 1) seed repository, 2)
fuzzing engine, 3) data discriminator, and 4) data augmentation
to generate the dataset, which are used for training the 5) ML-
based model. We present the details of each component.

1) Seed Repository: The seed repository aims to provide
the initial seeds for the fuzzing engine. The initial seeds
contain the NPCs’ behaviors including speeds and turning
commands (e.g. line-changing status) at each time slot. These

seeds are generated with a random strategy under two user-
defined constraints. (1) The speed of NPC is set in the range of
0∼3 km/h, and (2) the turning command is generated as 0, 1,
and 2, where 0, 1, and 2 denote “stay in the same lane”, “turn
left”, and “turn right”, respectively. Starting for the seeds, the
fuzzing engine will start looking for the safety violations that
the given ADS has.

2) Fuzzing Engine: The fuzzing engine targets to find AV
safety violations by taking the initial seeds as its input. We
utilize AV-FUZZER as the main component of fuzzing engine,
since it can localize a vast amount of AV safety violations with
lower time cost (within only 10 hours) compared with other
fuzzing techniques such as random fuzzing. AV-FUZZER is
based on meta-heuristic algorithms and adopts a genetic engine
to localize accidents by continuously updating the scenario-
based fitness scores. As mentioned in Section II-D, we use a
state-of-the-art fuzzer, AV-Fuzzer, in this step, in order to find
as many and complete safety violations of the AV as possible.

3) Data Discriminator: Data discriminator is designed to
group and label AV safety violation cases that are generated by
fuzzing engine so that these cases can be used for ML model
training. We adopt the K-Means algorithm to cluster the safety
violations. Given a set of unlabeled safety violation cases, K-
Means algorithm partitions them into several categories by
minimizing the within cluster sum of squares (WCSS), and all
violations in the same category share the same label, which
corresponds to a certain type of safety violations that the AV
may reveal.

4) Data Augmentation: The data augmentation component
in SALUS is used to increase the size of the training data, thus
improves the accuracy of the proposed safety monitor. After
the fuzzing engine and data discriminator, we can obtain some
labeled AV safety violations in each group. To enrich the data
in each group, we perform some random mutations for each
of those accidents. These mutations are conducive to maintain
the diversity of the training data. The details are explained
as follows: For each safety violation group, the NPC speed
is randomly updated by adding or subtracting 10%. Those
generated potential safety violations in the group will be tested
with the ADS under test again and so to confirm the label. If
the new data indeed leads to a safety violation, we add it to
the group. Otherwise, the case will be discarded.

5) ML-Based Model: ML-based model is the key com-
ponent of the safety monitor. We adopt the long short-term
memory (LSTM) sequence to sequence (Seq2Seq) model
along with two fully-connected layers (FCLs) for the model.
The monitor predicts a safety factor in each time slot (1 time
slot = 0.25 seconds in our experiment). The safety factor is
a metric we use in the ML output to gauge how likely the
current trajectory symptoms lead to a safety violation of the
AV. We first pre-process the data we generate before starting
training the model. By doing so, the raw data can be then
transferred into well-constructed feature vectors that can be
easily trained and inferenced by our ML model. Take k-th
time slot in j-th trial for example, the processed data can be
represented as Ijk = [ijk0 , ijk1 , ..., ijk4 ]. Among those factors,
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ijk0 denotes the Euclidean distance between the position of the
AV and the NPC; ijk1 and ijk2 represent the running speed of
these two vehicles; ijk3 denotes the relative steering angle of
the AV and the NPC; and ijk4 is a coefficient that records the
relative position information of these two vehicles.

Figure 7 presents the architecture of our ML model. The
model takes information from 5 consecutive time slots (4
previous and 1 current slots) as the input, which compose a
5 × 5 matrix Ijk = [Ijk−4, Ijk−3, ..., Ijk]T. And the output
Ojk, which is a vector with a length of 8, is the predicted
safety factors of following 8 time slots. As Figure 7 shows,
Seq2Seq in the ML model consists of two important layers: an
encoder and a decoder. The encoder calculates the input data
into a hidden encode state, while the decoder takes hidden
encode state as input and transfers it to the decode state.
Each computation unit in the encoder and decoder is based
on LSTM. Still using Ijk to explain, the computation process
of one LSTM unit can be formulated as below:

fq = σ(Wf · (Ejk−1 ⊕ Ijk) + bf )

iq = σ(Wi · (Ejk−1 ⊕ Ijk) + bi)

C̃q = tanh(WC · (Ejk−1 ⊕ Ijk) + bC)

Cq = Cq−1 ⊙ fq + C̃q ⊙ iq

oq = σ(Wo · (Ejk−1 ⊕ Ijk) + bo)

Ejk = oq ⊙ tanh(Cq)

(1)

where Ejk and Ejk−1 are the output vectors of current and
the previous LSTM units with length 5; fq , iq , and oq denote
forget, input, and output gates; C̃q and Cq denote represent
candidate values vector and memory state vector; Wf , Wi,
WC and Wo are the weight matrices initialized with random
values, while bf , bi, bC and bo are bias vectors of each gate
or cell; σ and tanh denote sigmoid and hyperbolic tangent
activation function; ⊙ and ⊕ represent hadamard product and
concatenation respectively. Thus, the LSTM-based encoder
can compute input matrix Ijk into Ejk, of which dimension
is also 5 × 5. For simplicity, we formulate this process as
Eji = LSTM(Ijk). Then, an LSTM-based decoder decodes the
encode state matrix Ejk into the decode state matrix, of which
dimension is 5× 8. At last, FCL layers map the decode state
matrix into model output Ojk, which contains the predicted
safety factors of AV for the following 8 time slots (from k+1
to k + 8). In all, the ML model can be represented by the
following equation:

Ojk = WTLSTM2(LSTM1(Ijk)) (2)

where LSTM1 and LSTM2 denote the encoder and decoder
of Seq2Seq, and W represent the coefficient weights of FCL
layers with dimension 5× 1.

B. Safety Monitor Deployment and Safety Violation Mitigation

Figure 9 presents how we deploy our safety monitor gen-
erated by SALUS on an AV to detect and mitigate safety
violations in real-time. When AV starts cruising, SALUS first
collects 1.25 seconds of data as the initial input to the safety
monitor – this short period of time refer to the cold start
phase in the monitor. Such a cold start cost is very small and
can be neglected in terms of the safety perspective. Then, the
monitor will collect the real-time information of surrounding
NPC trajectories and perform inference through the ML model
every time slot (0.25 seconds). Once the predicted safety factor
is higher than the user-defined threshold, the monitor will
alert. Note that each ML-based safety monitor holds its own
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threshold in practice, and we carefully explain and evaluate
the value selections of the threshold in Section V-C. For the
mitigation, as shown in Figure 8, the monitor will take over
the control of the AV and apply a brake commands until our
safety monitor shows that the trajectories resume back to a
safety state.

V. EVALUATION

In this section, we first present the driving environment
setups and the evaluation metrics. Then we evaluate SALUS
based on two metrics: (1) the prediction accuracy of safety
violations, and (2) the success rate of safety violation mitiga-
tion. Besides, we also conduct cross validation with different
models and ADS versions.

A. Driving Environment Setup

The ML-based safety monitor is developed under PyTorch
1.11. For all 3 Baidu Apollo versions, we conduct the model
creation and model deployment under the same initial seed.
For the map selection, we use a standard two-lane road
structure – similar roach structures are commonly used in
related works as well [17], [10]. We run the fuzzing engine
for 10 hours and find 9∼14 safety violations for each ADS
under test. These safety violations fall into 2∼4 groups by
data discriminator. In detail, Apollo 3.5, 5.0, and 6.0 have 2
groups, 3 groups, and 4 groups, respectively.

B. Evaluation Metrics

We evaluate SALUS using the following metrics:
• False Positive (FP): FP can be calculated by (number

of FP time slots) / (number of total time slots). It
quantifies how much SALUS falsely predict safe scenarios
as dangerous. The lower the better.

• False negative (FN): FN can be calculated by (number of
FN trials) / (number of total trials). It quantifies how much
SALUS falsely predict dangerous scenarios. The lower the
better.

• F1 Score (F1): F1 can be calculated as formulated as
below equation. It is the primary metrics to evaluate the
performance of a classifier [23]. We also use F1 score to
determine the threshold in our ML-based safety monitor.

F1 =
TP

TP + 1
2 (FP + FN)

(3)

where TP indicates true positive (i.e. correctly predict
safe as safe). The higher (closer to 1) the better.

• Safety Violation Rate: Fault rate can be calculated by
(number of safty violations trials) / (number of total
trials). It is the most intuitive metrics to evaluate the
safety indicator of an AV (the lower the better). The lower
safety violation rate of an AV is, the more safety violation
that AV can avoid. The lower (closer to 0) the better.

C. Prediction Accuracy

Before we present the prediction accuracy, we first present
the detailed settings. Back to the data augmentation phase in
SALUS creation workflow, we collected nearly one thousand
trials of AV safety violations and other actions for each group.
If one trial is very close to a safety violation but finally
executes in normal, we define it as a close trial. On the
one hand, we use 400 AV safety violation trials, 200 close
trials, and 200 random trials for training the ML predictor
for each group. On the other hand, we use another 100 AV
safety violation trials, 50 close trials, and 50 random trials for
testing. We balance the training and testing data to obtain a
higher prediction accuracy and a fair evaluation, respectively.
We decompose each trial into several sliding windows. There
are 40 time slots in each trial. The first 5 time slots are the
model input (i.e. cold-start stage) for SALUS, while the output
is the safety prediction for the later 8 time slots. Recall that
the output of the ML-based model is an 8 dimension vector,
where each number in this vector represents a safety prediction
for its corresponding time slot. Specifically, this predicted
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Fig. 10: Prediction accuracy of each group across different thresholds in each ADS version.

number is a floating-point number in range of 0 to 1. We set a
hyperparameter threshold for each group here. If this number
exceeds the user-defined threshold, the corresponding time slot
will be regarded as dangerous, otherwise safe. False positive:
If any of the 8 predicted numbers exceeds the threshold and
the ground truths of them are all 0, such will be recorded as
a false positive case. False negative: If all of the 8 predicted
numbers do not exceed the threshold while there is one number
or more has a ground truth 1, such will be recorded as a false
negative case. For each group, we traverse the thresholds from
0 to 1 and choose a value that can lead to the largest F1 score,
which is the prime metrics to evaluate the effectiveness of a
classifier. Such an optimized value will be selected in SALUS
deployment. If one ML model of any group evaluates NPC
actions in the current surrounding as dangerous, the message
will be sent to mitigator. And SALUS will alert ADS and then
conduct an emergent brake.

Figure 10 presents the comprehensive prediction results.
Since we adopt three Apollo versions and each version has
different number of groups, there are 9 ML-based model
presented. As we see, F1 in ML-based models keep in a
high value (≥ 0.7) in most of the threshold, demonstrating
the effectiveness of the ML-based model design. We also
observe that in some groups, such Apollo 6.0 Group 3, the
F1 score decrease rapidly when we increase the threshold
from 0.5 to 0.6. The reason is that the data points gathered

TABLE I: F1 and its corresponding threshold in safety monitor
deployment.

Model Name Threshold F1
Apollo 3.5 Group 1 0.445 0.924
Apollo 3.5 Group 2 0.490 0.931
Apollo 5.0 Group 1 0.355 0.951
Apollo 5.0 Group 2 0.750 0.897
Apollo 5.0 Group 3 0.365 0.940
Apollo 6.0 Group 1 0.185 0.778
Apollo 6.0 Group 2 0.345 0.897
Apollo 6.0 Group 3 0.405 0.836
Apollo 6.0 Group 4 0.270 0.854

Average - 0.889

at 0.5∼0.6 in this group, resulting in a rapid change in this
range even we switch the threshold very slightly. However
such rapid decreases does not affect the functionality of the
safety monitor, since this monitor is only deployed with the
threshold that has highest F1. Table I presents the F1 values
that are used for model deployment for each group. Note that
we do not calculate the average threshold as it does not hold
practical meanings. As we can see, the F1 has an average
value of 0.889 and is in the range of 0.778 to 0.951 across 9
ML-based models, which demonstrates that the prediction of
our proposed ML-based safety monitor is accurate.



Results: The proposed ML-based safety monitor in SALUS
is accurate in predicting AV safety violations with an
average of 0.889 F1 value across all ADS versions.

D. Safety Violation Mitigation

We evaluate the safety violation mitigation efficiency from
two perspectives: safety violation rate (how many safety
violations can be mitigated) and FP value (the safe scenario
will not be predicted as dangerous).

1) Safety Violation Rate: We perform ablation experiments
to examine the violation mitigation efficiency of SALUS.
Specifically, we evaluate safety violation rates with and with-
out SALUS protection in dangerous scenarios for different
ADS versions. To generate enough dangerous scenarios for
evaluation, we follow the same strategy in data augmentation
(see Section IV-A4). For each group, we generate 200 trials
that will lead to safety violations. Since Apollo 3.5, 5.0, and
6.0 have 2, 3, and 4 groups, there will be 400, 600, and
800 trials for each ADS version, respectively. All generated
trials will be evaluated twice: one for ADS without SALUS
protection and the other for ADS with SALUS deployed.

Figure 11 presents the results. In all, we can observe
that our SALUS is able to mitigate at least 97.2% of safety
violation cases in all ADS versions compared to the ADS
without any protections. In Apollo 3.5, the safety violation
rate without SALUS is 62.50% (250/400), while this number
decreases to 1.75% (7/400) after we deploy SALUS protection,
mitigating 97.2% safety violations. In Apollo 5.0 and 6.0, the
safety violation rates reduce from 50.60% (304/600) to 0.00%
(0/600) and 27.63% (221/800) to 0.25% (2/800), successfully
mitigating 100% and 99.10% safety violations, respectively.
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Fig. 11: Safety violation rates across different ADS Versions.
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2) False Positive (FP): We also evaluate the FP value of
SALUS technique to demonstrate that SALUS not only can
mitigate safety violations but also reacts normally in those

safe scenarios. Before we present the results, we first introduce
how we create testing data of safe scenarios. We modify the
convergence condition of fuzzing engine (see Section IV-A2)
and randomly generate 200 trials, which contain the speed and
other behaviors of NPC. These trials are also executed in the
LGSVL simulator under three ADS versions to make sure they
will not result in any safety violations. We maintain 35 time
slots for each trial. Therefore, there are 7000 (200×35) time
slots in total for evaluating the FP across three versions of
ADS.

Figure 12 presents the results. Among 7000 time slots to
be tested, Apollo 3.5, 5.0, and 6.0 only report 124, 37, and
79 times of false alerts, which corresponds to 0.018, 0.005,
and 0.011 FP values. These FP values are small enough and
routinely regarded as a convincing classifier [24]. In all, we
observe that all three versions of ADS can keep a low FP
value of no more than 0.018.

Results: SALUS can mitigate more than 97.2% of AV
safety violations compared with an ADS without any
protection, and the FP value is no more than 0.018.

E. Cross-Validation of ML-based Models and ADS Versions

We perform cross-validation tests across each ML-based
model and each ADS version, to demonstrate each ML-based
model is more suitable for its corresponding ADS version.
Similar to previous evaluations, we perform cross-validation
based on two important metrics, safety violation rates and FP
values. The only difference is each ML-based model is also
deployed to all three selected ADS versions. Tables II and
III present the cross-validation results. In Table II, we can
see that, in Apollo 5.0 and 6.0, the lowest safety violation
rates are found in its corresponding ADS version. The same
observation can be obtained in Table III as well, where the
lowest FP values for Apollo 3.5, 5.0, and 6.0 are 0.018,
0.005, and 0.011 respectively. These FP values also lie on
their corresponding ADS versions. The only exception can
be found in the safety violation rate of Apollo 3.5, where the
models for Apollo 5.0 and 6.0 can also achieve low safety
violation rates (0.00% and 0.75%). The key reason is that
Apollo 5.0 and 6.0 preserve the driving features of Apollo 3.5,
which allow the characteristics learned from models for these
two versions to be compatible with Apollo 3.5. However, we
argue that such exceptions do not affect the main results,
since the model for Apollo 3.5 has the lowest FP value on its
corresponding ADS version and similar observations cannot
be obtained through the upgrades from 5.0 to 6.0.

Results: The ML-based model always achieves its best
performance only on its corresponding ADS version.

VI. RELATED WORK

Existing works that enable AV safety are mostly based on
the testing-debugging strategy. After the safety violations are
found through stress testings, AV developers need to localize



TABLE II: The cross validation of safety violation rates across
different models and ADS versions.

Apollo 3.5 Apollo 5.0 Apollo 6.0
Model for Apollo 3.5 1.75% 6.24% 7.18%
Model for Apollo 5.0 0.00% 0.00% 5.55%
Model for Apollo 6.0 0.75% 0.60% 0.25%

TABLE III: The cross validation of FP values across different
models and ADS versions.

Apollo 3.5 Apollo 5.0 Apollo 6.0
Model for Apollo 3.5 0.018 0.069 0.072
Model for Apollo 5.0 0.027 0.005 0.056
Model for Apollo 6.0 0.086 0.060 0.011

the corresponding code segment and then fix the bugs. Fremont
et al [6] introduce an ML-based probabilistic programming
language, Scenic, which generates testing scenarios that can
help debug the perception module in ADS. Garcia et al [8]
analyze the existing data reports of many AV accidents, locate
the modules with errors directly, and summarize 16 findings
through comprehensive evaluations, which can bring insights
for subsequent bug fixing. Horel et al [25] propose a decision-
making system for AVs to enable AV safety based on Monte
Carlo sampling and deep reinforcement learning searching
strategies. Tang et al [26] conduct a simulation-based test
based on a behavior tree to generate all possible violations
that AV could carry out. Ghodsi et al [27] enable AV safety
via analyzing real-world driving data in an industrial-level
high-definition simulator. Although these methods achieve
promising performance in generating testing cases for en-
abling AV safety, these methods still require massive human-
supervised code localizing and bug fixing efforts. In contrast,
our proposed protection technique SALUS does not require any
bug fixing stages and can be integrated with ADS flexibly,
significantly reducing the cost.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose SALUS technique enable AV
safety by detecting and mitigating safety violations in real-
time. SALUS uses an ML-based safety monitor composed of an
LSTM-based Seq2Seq and several FCL layers to evaluate the
risks of surroundings. We present the creation and deployment
stages of SALUS technique. Both of these two stages are
automatic and flexible, significantly reducing the time cost
compared with existing AV protection methods. Evaluation
shows that the ML model is accurate in predicting safety
violations and SALUS is effective in mitigating those viola-
tions (more than 97.2% accident cases) in real-time driving
scenarios for different versions of Baidu Apollo.

In the future, we plan to conduct our research based on
two directions. (1) Accelerating the fuzzing engine in SALUS
creating workflow. In this work, we only choose AV-FUZZER
for generating training the dataset for SALUS, since it can
localize AV safety violations with a low time cost. However,
this cost can be further improved by adopting more fine-
grained mutation techniques. (2) Enriching the mitigation

strategy. In this work, we only adopt the emergent brake in
mitigating safety violations. There are also some other means,
such as different levels of braking and direction changing, for
enabling AV safety under various scenarios. We will include
these methods in the future.
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